07 Dec 2022
DiamondWorld Directory
-
Home |
News
Home
Report by GSI: Rare phosphorescence in CVD Lab Grown Diamond
Recently Gemological Science International's (GSI) interest was drawn to a CVD lab grown diamond weighing 1.547 ct., emerald cut, VS1 clarity and H color, which was submitted to the Mumbai Lab for Post Growth Treatment Identification
By: Diamond World News Service
|
Sep 29 2022 4:56PM
|
Reference: 26546  

DecreaseIncrease
Greenish yellow fluorescence (left), on rotation of 180 degrees strong orange color observed
Greenish yellow fluorescence (left), on rotation of 180 degrees strong orange color observed

Lab Grown Diamonds have gained increased popularity in recent times. Today’s cutting-edge technology has made it possible to replicate a diamond’s natural growth in highly controlled environments. The result has been the production of lab grown diamond in a few days, or weeks, with minimum investment.  Lab grown diamonds are identical to a mined diamonds chemically, physically, and optically, but cost about 50% less.

CVD (Chemical Vapor Deposition) and High pressure and High temperature (HPHT), are the most common lab grown diamond manufacturing processes, and each of the methods have their own distinguishing factors, enabling gemologists and well-equipped labs to identify them.

CVD lab grown diamonds shows distinct fluorescence when exposed to a conventional SWUV (Short-wave Ultra-Violet) lamp (280-315 nm). Typical SWUV reaction observed in CVD lab grown diamonds are orange, yellow, green, violet or blue fluorescence colors. Prolonged exposure to SWUV may have some effect, and a change in fluorescence color can be observed (Eaton-Magaña & Shigley 2016, Wang et al., 2003, 2005, 2007, 2010, 2012).

Recently our interest was drawn to a CVD lab grown diamond weighing 1.547 ct., emerald cut, VS1 clarity and H color, which was submitted to the Gemological Science International (GSI) Mumbai Lab for Post Growth Treatment Identification.

The absorption spectra in the mid-infrared region showed typical absorption features of type IIa, as seen in CVD lab grown diamonds. No additional absorption features were observed. (Fig 1)


Fig.1: The mid-infrared spectrum indicating type IIa of CVD 1.547ct, emerald cut.

Photoluminescence spectroscopy with 532 nm excitation showed peaks at 737, 637 and 575 nm (Fig.2). The 737 nm and 766 nm emission systems are associated with silicon-vacancy centers, including moderately strong NV emission lines at 575 and 637 nm (Clark et al.,1995)

Fig.2: Photoluminescence spectroscopy with N-V centres and Si-V peaks of CVD 1.547ct, emerald cut.

Raman microscope with 532 nm spectrometers showed extremely strong NV emission lines at 575 and 637 nm, absence of 596/597 nm doublet indicates post-growth treatment. (Fig.3) (Clark et al.,1995).

Fig.3: Raman microscope spectroscopy with N-V centres related peaks of CVD 1.547ct, emerald cut.

DiamondView revealed a strong greenish yellow fluorescence when observed length wise, and interestingly, on a rotation of 180 degrees ,a strong orange fluorescence was observed. (Main image on top)

Most CVD in DiamondView have shown orange, red, blue and sometimes mottled distribution of purple, red, and blue fluorescence color. The phosphorescence is usually inert, but in some rare instances, variable degrees of weak blue-green phosphorescence has been observed. Studies have revealed that these variable fluorescence color and phosphorescence intensities could be related to the growth of CVD lab grown diamonds. The change in the fluorescence colors could be due to the defects in the internal crystal plane. (Lu, Q. et al.,2021).

Due to prolonged observation in DiamondView, when the DiamondView was turned off, an intense red phosphorescence for a few milliseconds (10-15 milliseconds) was observed which quickly changed to yellow (Fig.5).  Such observations have not been reported earlier in CVD diamonds. This intense red phosphorescence was observed only after prolonged exposure to DiamondView.

Fig.5. Phosphorescence seen post UV excitation for milli seconds only

The possible reason for different fluorescence colors, in different direction and phosphorescence, is assumed could be due to inconsistent lattice defects during the CVD growth process.

 

Authors: Deepa Srinivasa, Dr. Ramchandra Patil, Bharanidharan K, Prathamesh Bare

 

 



Follow DiamondWorld on Instagram: @diamondworldnet
Follow DiamondWorld on Twitter: @diamondworldnet
Follow DiamondWorld on Facebook: @diamondworldnet
Have Your Say
* Your view
* Name:
* Email:
* Town/city:
* Country/State:
*  Company:
 
*  Name:
 
*  Mobile:
 
*  Email:
 
 
Subscribe for DiamondWorld weekly Newsletter
 
Advertisement
DWWeeklypost
Search News by City
Advertisement
DWsubscription
Recent Issue
2022
AVAILABLE NOW...!
News in Pictures
Videos
Young Diamantaires
Pictures: 16
Stunning Jewellery from Cannes 2019
Pictures: 24
Sparkly Jewels at Oscars 2019
Pictures: 19
Golden Globes 2018
Pictures: 15
Spotted: Who Wore What (December 2018)
Pictures: 4
India Diamond Week
Pictures: 8
Spotted: Who Wore What (October 2018)
Pictures: 7
Spotted: Who Wore What (September 2018)
Pictures: 6
70th Emmy Awards
Pictures: 11
35th India International Jewellery Show 2018
Pictures: 46
JJS - IJ Jewellers Choice Design Awards 2015 powered by GIA
Views: 32040
Diamond World Expert Hour with Evgeny Agureev, Deputy CEO, ALROSA
Views: 9544
GJEPC Chairman Interview
Views: 28141
IJ Jewellers Choice Design Awards 2012 - Part 1
Views: 39385
Promo for IJ Awards 2012 at NDTV Profit
Views: 57077
IJ Jewellers Choice Design Awards 2012- Part 2
Views: 68570
Couture India 2016 - A Business Boutique Show by IJ Magazine
Views: 21893
Savjibhai Dholakiya, Surat Businessman (Diamond Merchant) speaks in Vibrant 2015
Views: 50941
IJ Jewellers Choice Design Awards 2013 - NDTV Video
Views: 53136
Advertisement
DW News App
Member of:
Supporter of: